17 research outputs found

    Development and characterization of PHB-HV based 3D scaffolds for a tissue engineering and cell-therapy combinatorial approach for spinal cord Injury regeneration

    Get PDF
    Spinal cord injury (SCI) leads to devastating neurological deficits. Several tissue engineering (TE)- based approaches have been investigated for repairing this condition. Poly (3-hydroxybutyrateco- 3-hydroxyvalerate) (PHB-HV) is found to be particularly attractive for TE applications due to its properties, such as biodegradability, biocompatibility, thermoplasticity and piezoelectricity. Hence, this report addresses the development and characterization of PHB-HV-based 3D scaffolds, produced by freeze-drying, aimed to SCI treatment. The obtained scaffolds reveal an anisotropic morphology with a fully interconnected network of pores. In vitro studies demonstrate a lack of cytotoxic effect of PHB-HV scaffolds. Direct contact assays also reveal their ability to support the culture of CNS-derived cells and mesenchymal-like stem cells from different sources. Finally, histocompatibility studies show that PHB-HV scaffolds are well tolerated by the host tissue, and do not negatively impact the left hindlimb locomotor function recovery. Therefore results herein presented suggest that PHB-HV scaffolds may be suitable for SCI treatment.This study was supported by the Portuguese Foundation for Science and Technology (FCT; Grant no PTDC/SAU-BMA/114059/2009; PEst-C/SAU/LA0001/2013-2014 and RNEM-REDE/1506/REM/2005) and Foundation Calouste Gulbenkian, under the scope of the Gulbenkian Program to Support Cutting Edge Research in Life Sciences (A.J.S.). This work was also partially supported by the European FP7 Project Find and Bind (NMP4-SL-2009-229292). The authors would like to thank Miguel Carvalho, Fabio Teixeira, and Filipa Campos for their collaboration in in vivo experiments

    Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach

    Get PDF
    In this work, scaffolds derived from a new biomaterial originated from the combination of a natural material and a synthetic material were tested for assessing their suitability for cartilage tissue engineering applications. In order to obtain a better outcome result in terms of scaffolds’ overall properties, different blends of natural and synthetic materials were created. Chitosan and polybutylene succinate (CPBS) 50/50 (wt%) were melt blended using a twin-screw extruder and processed into 5 5 5mm scaffolds by compression moulding with salt leaching. Micro-computed tomography analysis calculated an average of 66.29% porosity and 92.78% interconnectivity degree for the presented scaffolds. The salt particles used ranged in size between 63 and 125 lm, retrieving an average pore size of 251.28 lm. Regarding the mechanical properties, the compressive modulus was of 1.73 ± 0.4MPa (Esec 1%). Cytotoxicity evaluation revealed that the leachables released by the developed porous structures were not harmful to the cells and hence were noncytotoxic. Direct contact assays were carried out using a mouse bone marrow–derived mesenchymal progenitor cell line (BMC9). Cells were seeded at a density of 5 105 cells/scaffold and allowed to grow for periods up to 3 weeks under chondrogenic differentiating conditions. Scanning electron microscopy analysis revealed that the cells were able to proliferate and colonize the scaffold structure, and MTS test demonstrated cell viability during the time of the experiment. Finally, Western blot performed for collagen type II, a natural cartilage extracellular matrix component, showed that this protein was being expressed by the end of 3 weeks, which seems to indicate that the BMC9 cells were being differentiated toward the chondrogenic pathway. These results indicate the adequacy of these newly developed C-PBS scaffolds for supporting cell growth and differentiation toward the chondrogenic pathway, suggesting that they should be considered for further studies in the cartilage tissue engineering field.J. T. Oliveira would like to acknowledge the grant (SFRH/ BD17135/2004) from Portuguese Foundation for Science and Technology (FCT). The authors would like to thank Fernanda Marques, at the Institute for Health and Life Sciences (ICVS), University of Minho, Braga, Portugal, for her help with the Western blot analysis, as well as the staff at ICVS for allowing to use their facilities. The monoclonal antibody for collagen type II was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the Department of Biological Sciences, University of Iowa (Iowa City, IA). This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283), and partially supported by the European Project GENOSTEM (LSHB-CT-2003-503161) and the FCT Project CartiScaff (POCTI/SAU-BMA/58991/2004)

    Pharmacological and Non-Pharmacological Agents versus Bovine Colostrum Supplementation for the Management of Bone Health Using an Osteoporosis-Induced Rat Model

    Get PDF
    Osteoporosis is defined by loss of bone mass and deteriorated bone microarchitecture. The present study compared the effects of available pharmacological and non-pharmacological agents for osteoporosis [alendronate (ALE) and concomitant supplementation of vitamin D (VD) and calcium (Ca)] with the effects of bovine colostrum (BC) supplementation in ovariectomized (OVX) and orchidectomized (ORX) rats. Seven-month-old rats were randomly allocated to: (1) placebo-control, (2) ALE group (7.5 μg/kg of body weight/day/5 times per week), (3) VD/Ca group (VD: 35 μg/kg of body weight/day/5 times per week; Ca: 13 mg/kg of body weight/day/3 times per week), and (4) BC supplementation (OVX: 1.5 g/day/5 times per week; ORX: 2 g/day/5 times per week). Following four months of supplementation, bone microarchitecture, strength and bone markers were evaluated. ALE group demonstrated significantly higher Ct.OV, Ct.BMC, Tb.Th, Tb.OV and Tb.BMC and significantly lower Ct.Pr, Tb.Pr, Tb.Sp, Ct.BMD and Tb.BMD, compared to placebo (p < 0.05). BC presented significantly higher Ct.Pr, Ct.BMD, Tb.Pr, Tb.Sp, and Tb.BMD and significantly lower Ct.OV, Ct.BMC, Tb.Th, Tb.OV and Tb.BMC compared to ALE in OVX rats (p < 0.05). OVX rats receiving BC experienced a significant increase in serum ALP and OC levels post-supplementation (p < 0.05). BC supplementation may induce positive effects on bone metabolism by stimulating bone formation, but appear not to be as effective as ALE

    Emerging tumor spheroids technologies for 3D in vitro cancer modeling

    Get PDF
    "Article in Press, Available online 31 October 2017" ; "S0163-7258(17)30268-1"Cancer is a leading cause of mortality and morbidity worldwide. Around 90% of deaths are caused by metastasis and just 10% by primary tumor. The advancement of treatment approaches is not at the same rhythm of the disease; making cancer a focal target of biomedical research. To enhance the understanding and promts the therapeutic delivery; concepts of tissue engineering are applied in the development of in vitro models that can bridge between 2D cell culture and animal models, mimicking tissue microenvironment. Tumor spheroid represents highly suitable 3D organoid-like framework elucidiating the intra and inter cellular signaling of cancer, like that formed in physiological niche. However, spheroids are of limited value in studying critical biological phenomenon such as tumor-stroma interactons involving extra cellular matrix or immune system. Therefore, a compelling need of tailoring spheroid technologies with physiologically relevant biomaterials or in silico models, is ever emerging. The diagnostic and prognostic role of spheroids rearrangements within biomaterials or microfluidic channel is indicative of patient management; particularly for the decision of targated therapy. Fragmented information on available in vitro spheroid models and lack of critical analysis on transformation aspects of these strategies; pushes the urge to comprehensively overview the recent technological advancements (e.g. bioprinting, micro-fluidic technologies or use of biomaterials to attain the third dimension) in the shed of tranlationable cancer research. In present article, relationships between current models and their possible exploitation in clinical success is explored with the highlight of existing challenges in defining therapeutic targets and screening of drug efficacy.The authors are thankful to European Union (Horizon 2020) funded project FoReCaST (No. 668983), the FCT fellowship to J. Silva-Correia (Grant No. SFRH/BPD/100590/2014), distinctions to J.M.O. under the Investigator FCT program (IF/00423/2012) and V.M.C. under the Investigator FCT program (IF/01214/2014) for supporting this work financially.info:eu-repo/semantics/publishedVersio

    Anti-cancer drug validation: the contribution of tissue engineered models

    Get PDF
    Abstract Drug toxicity frequently goes concealed until clinical trials stage, which is the most challenging, dangerous and expensive stage of drug development. Both the cultures of cancer cells in traditional 2D assays and animal studies have limitations that cannot ever be unraveled by improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. Considering the NCI60, a panel of 60 cancer cell lines representative of 9 different cancer types: leukemia, lung, colorectal, central nervous system (CNS), melanoma, ovarian, renal, prostate and breast, we propose to review current Bstate of art^ on the 9 cancer types specifically addressing the 3D tissue models that have been developed and used in drug discovery processes as an alternative to complement their studyThis article is a result of the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This article was also supported by the EU Framework Programme for Research and Innovation HORIZON 2020 (H2020) under grant agreement n° 668983 — FoReCaST. FCT distinction attributed to Joaquim M. Oliveira (IF/00423/2012) and Vitor M. Correlo (IF/01214/2014) under the Investigator FCT program is also greatly acknowledged.info:eu-repo/semantics/publishedVersio

    Redox activity of melanin from the ink sac of <i>Sepia officinalis</i> by means of colorimetric oxidative assay

    No full text
    <p>The redox properties of natural extract from cuttlefish ink sac (<i>Sepia officinalis</i>) and synthetic melanin used as a biomimetic in melanin structural investigation were determined by comparison of this phenol-based heterogeneous pigment with gallic acid used as a standard in Folin–Ciocalteu colorimetric assay widely employed for characterisation of oxidative properties of biomaterials. Reactivity of sepia melanin reported here is much higher than previously indicated and this protocol should allow the redox characterisation of all melanins irrespective of their origin and composition.</p
    corecore